After 8 months of work by Yinon Burgansky, libinput now has a new pointer acceleration profile: the "custom" profile. This profile allows users to tweak the exact response of their device based on their input speed.
A short primer: the pointer acceleration profile is a function that multiplies the incoming deltas with a given factor F, so that your input delta (x, y) becomes (Fx, Fy). How this is done is specific to the profile, libinput's existing profiles had either a flat factor or an adaptive factor that roughly resembles what Xorg used to have, see the libinput documentation for the details. The adaptive curve however has a fixed behaviour, all a user could do was scale the curve up/down, but not actually adjust the curve.
Input speed to output speed
The new custom filter allows exactly that: it allows a user to configure a completely custom ratio between input speed and output speed. That ratio will then influence the current delta. There is a whole new API to do this but simplified: the profile is defined via a series of points of (x, f(x)) that are linearly interpolated. Each point is defined as input speed in device units/ms to output speed in device units/ms. For example, to provide a flat acceleration equivalent, specify [(0.0, 0.0), (1.0, 1.0)]. With the linear interpolation this is of course a 45-degree function, and any incoming speed will result in the equivalent output speed.
Noteworthy: we are talking about the speed here, not any individual delta. This is not exactly the same as the flat acceleration profile (which merely multiplies the deltas by a constant factor) - it does take the speed of the device into account, i.e. device units moved per ms. For most use-cases this is the same but for particularly slow motion, the speed may be calculated across multiple deltas (e.g. "user moved 1 unit over 21ms"). This avoids some jumpyness at low speeds.
But because the curve is speed-based, it allows for some interesting features too: the curve [(0.0, 1.0), (1.0, 1.0)] is a horizontal function at 1.0. Which means that any input speed results in an output speed of 1 unit/ms. So regardless how fast the user moves the mouse, the output speed is always constant. I'm not immediately sure of a real-world use case for this particular case (some accessibility needs maybe) but I'm sure it's a good prank to play on someone.
Because libinput is written in C, the API is not necessarily immediately obvious but: to configure you pass an array of (what will be) y-values and set the step-size. The curve then becomes: [(0 * step-size, array[0]), (1 * step-size, array[1]), (2 * step-size, array[2]), ...]. There are some limitations on the number of points but they're high enough that they should not matter.
Note that any curve is still device-resolution dependent, so the same curve will not behave the same on two devices with different resolution (DPI). And since the curves uploaded by the user are hand-polished, the speed setting has no effect - we cannot possibly know how a custom curve is supposed to scale. The setting will simply update with the provided value and return that but the behaviour of the device won't change in response.
Motion types
Finally, there's another feature in this PR - the so-called "movement type" which must be set when defining a curve. Right now, we have two types, "fallback" and "motion". The "motion" type applies to, you guessed it, pointer motion. The only other type available is fallback which applies to everything but pointer motion. The idea here is of course that we can apply custom acceleration curves for various different device behaviours - in the future this could be scrolling, gesture motion, etc. And since those will have a different requirements, they can be configure separately.
How to use this?
As usual, the availability of this feature depends on your Wayland compositor and how this is exposed. For the Xorg + xf86-input-libinput case however, the merge request adds a few properties so that you can play with this using the xinput tool:
# Set the flat-equivalent function described above $ xinput set-prop "devname" "libinput Accel Custom Motion Points" 0.0 1.0 # Set the step, i.e. the above points are on 0 u/ms, 1 u/ms, ... # Can be skipped, 1.0 is the default anyway $ xinput set-prop "devname" "libinput Accel Custom Motion Points" 1.0 # Now enable the custom profile $ xinput set-prop "devname" "libinput Accel Profile Enabled" 0 0 1The above sets a custom pointer accel for the "motion" type. Setting it for fallback is left as an exercise to the reader (though right now, I think the fallback curve is pretty much only used if there is no motion curve defined).
Happy playing around (and no longer filing bug reports if you don't like the default pointer acceleration ;)
Availability
This custom profile will be available in libinput 1.23 and xf86-input-libinput-1.3.0. No release dates have been set yet for either of those.
Thanks for continuing to improve input handling on Linux!
ReplyDeleteOne question I had is, can this new feature be used to replicate acceleration curves of say Windows or Mac? Could be an interesting compatibility feature to aid users switching from different systems :)